Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.157
Filtrar
1.
Biol Pharm Bull ; 46(12): 1778-1786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044096

RESUMO

Ribonuclease (RNase) He1 is a small ribonuclease belonging to the RNase T1 family. Most of the RNase T1 family members are active at neutral pH, except for RNase Ms, U2, and He1, which function at an acidic pH. We crystallized and analyzed the structure of RNase He1 and elucidated how the acidic amino residues of the α1ß3- (He1:26-33) and ß67-loops (He1:87-95) affect their optimal pH. In He1, Ms, and U2, the hydrogen bonding network formed by the acidic amino acids in the ß67-loop suggested that the differences in the acidification mechanism of the optimum pH specified the function of these RNases. We found that the amino acid sequence of the ß67-loop was not conserved and contributed to acidification of the optimum pH in different ways. Mutations in the acidic residues in He1 promoted anti-tumor growth activity, which clarified the role of these acidic amino residues in the binding pocket. These findings will enable the identification of additional targets for modifying pH-mediated enzymatic activities.


Assuntos
Ribonuclease T1 , Ribonucleases , Ribonucleases/química , Ribonuclease T1/química , Endorribonucleases , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio
2.
Proc Natl Acad Sci U S A ; 120(32): e2307604120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523523

RESUMO

In plants, host-pathogen coevolution often manifests in reciprocal, adaptive genetic changes through variations in host nucleotide-binding leucine-rich repeat immune receptors (NLRs) and virulence-promoting pathogen effectors. In grass powdery mildew (PM) fungi, an extreme expansion of a RNase-like effector family, termed RALPH, dominates the effector repertoire, with some members recognized as avirulence (AVR) effectors by cereal NLR receptors. We report the structures of the sequence-unrelated barley PM effectors AVRA6, AVRA7, and allelic AVRA10/AVRA22 variants, which are detected by highly sequence-related barley NLRs MLA6, MLA7, MLA10, and MLA22 and of wheat PM AVRPM2 detected by the unrelated wheat NLR PM2. The AVR effectors adopt a common scaffold, which is shared with the RNase T1/F1 family. We found striking variations in the number, position, and length of individual structural elements between RALPH AVRs, which is associated with a differentiation of RALPH effector subfamilies. We show that all RALPH AVRs tested have lost nuclease and synthetase activities of the RNase T1/F1 family and lack significant binding to RNA, implying that their virulence activities are associated with neo-functionalization events. Structure-guided mutagenesis identified six AVRA6 residues that are sufficient to turn a sequence-diverged member of the same RALPH subfamily into an effector specifically detected by MLA6. Similar structure-guided information for AVRA10 and AVRA22 indicates that MLA receptors detect largely distinct effector surface patches. Thus, coupling of sequence and structural polymorphisms within the RALPH scaffold of PMs facilitated escape from NLR recognition and potential acquisition of diverse virulence functions.


Assuntos
Ascomicetos , Ascomicetos/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Ribonuclease T1/genética , Ribonuclease T1/metabolismo , Polimorfismo Genético , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
3.
Anal Bioanal Chem ; 415(14): 2809-2818, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37093234

RESUMO

Accurate sequencing of single guide RNAs (sgRNAs) for CRISPR/Cas9 genome editing is critical for patient safety, as the sgRNA guides the Cas9 nuclease to target site-specific cleavages in DNA. An approach to fully sequence sgRNA using protective DNA primers followed by ribonuclease (RNase) T1 digestion was developed to facilitate the analysis of these larger molecules by hydrophilic interaction liquid chromatography coupled with high-resolution mass spectrometry (HILIC-HRMS). Without RNase digestion, top-down mass spectrometry alone struggles to properly fragment precursor ions in large RNA oligonucleotides to provide confidence in sequence coverage. With RNase T1 digestion of these larger oligonucleotides, however, bottom-up analysis cannot confirm full sequence coverage due to the presence of short, redundant digestion products. By combining primer protection with RNase T1 digestion, digestion products are large enough to prevent redundancy and small enough to provide base resolution by tandem mass spectrometry to allow for full sgRNA sequence coverage. An investigation into the general requirements for adequate primer protection of specific regions of the RNA was conducted, followed by the development of a generic protection and digestion strategy that may be applied to different sgRNA sequences. This middle-out technique has the potential to expedite accurate sequence confirmation of chemically modified sgRNA oligonucleotides.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Humanos , Ribonuclease T1/genética , Primers do DNA , Oligonucleotídeos , Digestão
4.
J Phys Chem Lett ; 13(34): 7980-7986, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984361

RESUMO

Using a combination of molecular dynamics simulation, dialysis experiments, and electronic circular dichroism measurements, we studied the solvation thermodynamics of proteins in two osmolyte solutions, trimethylamine N-oxide (TMAO) and betaine. We showed that existing force fields are unable to capture the solvation properties of the proteins lysozyme and ribonuclease T1 and that the inaccurate parametrization of protein-osmolyte interactions in these force fields promoted an unphysical strong thermal denaturation of the trpcage protein. We developed a novel force field for betaine (the KBB force field) which reproduces the experimental solution Kirkwood-Buff integrals and density. We further introduced appropriate scaling to protein-osmolyte interactions in both the betaine and TMAO force fields which led to successful reproduction of experimental protein-osmolyte preferential binding coefficients for lysozyme and ribonuclease T1 and prevention of the unphysical denaturation of trpcage in osmolyte solutions. Correct parametrization of protein-TMAO interactions also led to the stabilization of the collapsed conformations of a disordered elastin-like peptide, while the uncorrected parameters destabilized the collapsed structures. Our results establish that the thermodynamic stability of proteins in both betaine and TMAO solutions is governed by osmolyte exclusion from proteins.


Assuntos
Betaína , Muramidase , Metilaminas/química , Muramidase/metabolismo , Estabilidade Proteica , Ribonuclease T1/metabolismo , Soluções , Termodinâmica , Água/química
5.
Nucleic Acids Res ; 50(18): e106, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35871301

RESUMO

With the rapid growth of synthetic messenger RNA (mRNA)-based therapeutics and vaccines, the development of analytical tools for characterization of long, complex RNAs has become essential. Tandem liquid chromatography-mass spectrometry (LC-MS/MS) permits direct assessment of the mRNA primary sequence and modifications thereof without conversion to cDNA or amplification. It relies upon digestion of mRNA with site-specific endoribonucleases to generate pools of short oligonucleotides that are then amenable to MS-based sequence analysis. Here, we showed that the uridine-specific human endoribonuclease hRNase 4 improves mRNA sequence coverage, in comparison with the benchmark enzyme RNase T1, by producing a larger population of uniquely mappable cleavage products. We deployed hRNase 4 to characterize mRNAs fully substituted with 1-methylpseudouridine (m1Ψ) or 5-methoxyuridine (mo5U), as well as mRNAs selectively depleted of uridine-two key strategies to reduce synthetic mRNA immunogenicity. Lastly, we demonstrated that hRNase 4 enables direct assessment of the 5' cap incorporation into in vitro transcribed mRNA. Collectively, this study highlights the power of hRNase 4 to interrogate mRNA sequence, identity, and modifications by LC-MS/MS.


Assuntos
Endorribonucleases/química , RNA Mensageiro/química , Análise de Sequência de RNA/métodos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , DNA Complementar , Humanos , Oligonucleotídeos/análise , RNA Mensageiro/genética , Ribonuclease T1/metabolismo , Espectrometria de Massas em Tandem/métodos
6.
Cold Spring Harb Protoc ; 2021(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941667

RESUMO

In this protocol a randomly labeled single-stranded RNA probe is prepared and then hybridized to a population of mRNA molecules. The RNAs are digested with a mixture of RNase A and RNase T1. The hybrid molecules, which are resistant to the RNases, are separated and analyzed using gel electrophoresis and radiography.


Assuntos
Ensaios de Proteção de Nucleases/métodos , Sondas RNA , RNA/análise , Ribonucleases , Hibridização de Ácido Nucleico , RNA/química , RNA/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/química , Ribonuclease T1/metabolismo , Ribonuclease Pancreático/metabolismo
7.
Biochemistry ; 59(17): 1680-1687, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275395

RESUMO

Human cyclophilin D is a mitochondrial peptidyl-prolyl isomerase that plays a role in regulating the opening of the mitochondrial permeability transition pore. It is considered a viable and promising molecular target for the treatment of diseases for which disease development is associated with pore opening, e.g., Alzheimer's disease or ischemia/reperfusion injury. Currently available and widely used in vitro methods based on Kofron's assay for determining cyclophilin D activity suffer from serious drawbacks and limitations. In this study, a completely novel approach for an in vitro assay of cyclophilin D activity using RNase T1 refolding is introduced. The method is simple and is more in line with the presumed physiological role of cyclophilin D in protein folding than Kofron's assay, which relies on a peptide substrate. The method is applicable for identifying novel inhibitors of cyclophilin D as potential drugs for the treatment of the diseases mentioned above. Moreover, the description of CypD activity in the in vitro RNase T1 refolding assay reveals new possibilities for investigating the role of cyclophilin D in protein folding in cells and may lead to a better understanding of its pathological and physiological roles.


Assuntos
Descoberta de Drogas , Mitocôndrias/metabolismo , Redobramento de Proteína , Ribonuclease T1/química , Animais , Aspergillus oryzae/enzimologia , Bovinos , Humanos , Modelos Moleculares , Conformação Proteica
8.
Nucleic Acids Res ; 48(7): e41, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083657

RESUMO

RNAs are post-transcriptionally modified by dedicated writer or eraser enzymes that add or remove specific modifications, respectively. Mass spectrometry (MS) of RNA is a useful tool to study the modification state of an oligonucleotide (ON) in a sensitive manner. Here, we developed an ion-pairing reagent free chromatography for positive ion detection of ONs by low- and high-resolution MS, which does not interfere with other types of small compound analyses done on the same instrument. We apply ON-MS to determine the ONs from an RNase T1 digest of in vitro transcribed tRNA, which are purified after ribozyme-fusion transcription by automated size exclusion chromatography. The thus produced tRNAValAAC is substrate of the human tRNA ADAT2/3 enzyme and we confirm the deamination of adenosine to inosine and the formation of tRNAValIACin vitro by ON-MS. Furthermore, low resolution ON-MS is used to monitor the demethylation of ONs containing 1-methyladenosine by bacterial AlkB in vitro. The power of high-resolution ON-MS is demonstrated by the detection and mapping of modified ONs from native total tRNA digested with RNase T1. Overall, we present an oligonucleotide MS method which is broadly applicable to monitor in vitro RNA (de-)modification processes and native RNA.


Assuntos
Espectrometria de Massas , Oligonucleotídeos/análise , Processamento Pós-Transcricional do RNA , RNA de Transferência/química , RNA de Transferência/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Cromatografia em Gel , Células HEK293 , Células HeLa , Humanos , Oxigenases de Função Mista/metabolismo , Oligonucleotídeos/isolamento & purificação , RNA de Transferência/biossíntese , RNA de Transferência/isolamento & purificação , RNA de Transferência de Valina/química , RNA de Transferência de Valina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease T1/metabolismo
9.
Toxins (Basel) ; 11(10)2019 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614771

RESUMO

Immunotoxins are chimeric molecules that combine the specificity of an antibody to recognize and bind tumor antigens with the potency of the enzymatic activity of a toxin, thus, promoting the death of target cells. Among them, RNases-based immunotoxins have arisen as promising antitumor therapeutic agents. In this work, we describe the production and purification of two new immunoconjugates, based on RNase T1 and the fungal ribotoxin α-sarcin, with optimized properties for tumor treatment due to the inclusion of a furin cleavage site. Circular dichroism spectroscopy, ribonucleolytic activity studies, flow cytometry, fluorescence microscopy, and cell viability assays were carried out for structural and in vitro functional characterization. Our results confirm the enhanced antitumor efficiency showed by these furin-immunotoxin variants as a result of an improved release of their toxic domain to the cytosol, favoring the accessibility of both ribonucleases to their substrates. Overall, these results represent a step forward in the design of immunotoxins with optimized properties for potential therapeutic application in vivo.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Endorribonucleases/farmacologia , Proteínas Fúngicas/farmacologia , Furina/química , Imunoconjugados/farmacologia , Imunotoxinas/farmacologia , Ribonuclease T1/farmacologia , Linhagem Celular Tumoral , Humanos
10.
J Mass Spectrom ; 54(11): 906-914, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31663233

RESUMO

While a number of approaches have been developed to analyze liquid chromatography tandem mass spectrometry (LC-MS/MS) data obtained from modified oligonucleotides, the majority of these methods require analyzing every MS/MS spectrum de novo to sequence the oligonucleotide and place the modification. Spectral matching is an alternative approach for analyzing MS/MS data that is based on creating a library of annotated MS/MS spectra against which individual MS/MS data can be searched. Here, we have adapted the existing NIST spectral matching software to enable its use in the interpretation of MS/MS data obtained from modified oligonucleotides. In particular, we demonstrate the utility of this approach to identify specific post-transcriptionally modified nucleosides in particular transfer RNAs (tRNAs) obtained through a conventional RNA modification mapping experimental protocol. Spectral matching was found to be an efficient approach for screening for known modified tRNAs by using the experimental data as the library and previously annotated RNase T1 digestion products of tRNAs as the reference spectra. The utility of spectral matching for rapid analysis of multiple LC-MS/MS analyses was demonstrated by screening mutant strains of Streptococcus mutans to identify the enzyme(s) responsible for synthesizing the tRNA position 37 modification threonylcarbamoyladenosine (t6 A).


Assuntos
Oligonucleotídeos/análise , RNA de Transferência/análise , Análise de Sequência de RNA/métodos , Cromatografia Líquida de Alta Pressão , Biblioteca Gênica , Ribonuclease T1/metabolismo , Software , Espectrometria de Massas em Tandem
11.
Anal Chem ; 91(13): 8500-8506, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31129964

RESUMO

Characterization of mRNA sequences is a critical aspect of mRNA drug development and regulatory filing. Herein, we developed a novel bottom-up oligonucleotide sequence mapping workflow combining multiple endonucleases that cleave mRNA at different frequencies. RNase T1, colicin E5, and mazF were applied in parallel to provide complementary sequence coverage for large mRNAs. Combined use of multiple endonucleases resulted in significantly improved sequence coverage: greater than 70% sequence coverage was achieved on mRNAs near 3000 nucleotides long. Oligonucleotide mapping simulations with large human RNA databases demonstrate that the proposed workflow can positively identify a single correct sequence from hundreds of similarly sized sequences. In addition, the workflow is sensitive and specific enough to detect minor sequence impurities such as single nucleotide polymorphisms (SNPs) with a sensitivity of less than 1%. LC-MS/MS-based oligonucleotide sequence mapping can serve as an orthogonal sequence characterization method to techniques such as Sanger sequencing or next-generation sequencing (NGS), providing high-throughput sequence identification and sensitive impurity detection.


Assuntos
Cromatografia Líquida/métodos , Eritropoetina/metabolismo , Oligonucleotídeos/análise , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Espectrometria de Massas em Tandem/métodos , alfa Catenina/metabolismo , Colicinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/metabolismo , Eritropoetina/genética , Proteínas de Escherichia coli/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Mensageiro/genética , Ribonuclease T1/metabolismo , Análise de Sequência de RNA , Software , alfa Catenina/genética
12.
Methods ; 156: 128-138, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366097

RESUMO

Research into post-transcriptional processing and modification of RNA continues to speed forward, as their ever-emerging role in the regulation of gene expression in biological systems continues to unravel. Liquid chromatography tandem mass spectrometry (LC-MS/MS) has proven for over two decades to be a powerful ally in the elucidation of RNA modification identity and location, but the technique has not proceeded without its own unique technical challenges. The throughput of LC-MS/MS modification mapping experiments continues to be impeded by tedious and time-consuming spectral interpretation, particularly during for the analysis of complex RNA samples. RNAModMapper was recently developed as a tool to improve the interpretation and annotation of LC-MS/MS data sets from samples containing post-transcriptionally modified RNAs. Here, we delve deeper into the methodology and practice of RNAModMapper to provide greater insight into its utility, and remaining hurdles, in current RNA modification mapping experiments.


Assuntos
Cromatografia Líquida/estatística & dados numéricos , Oligorribonucleotídeos/análise , Processamento Pós-Transcricional do RNA , RNA de Transferência de Fenilalanina/análise , Software , Espectrometria de Massas em Tandem/estatística & dados numéricos , Fosfatase Alcalina/metabolismo , Interpretação Estatística de Dados , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/metabolismo , Ribonuclease T1/metabolismo , Saccharomyces cerevisiae , Análise de Sequência de RNA/estatística & dados numéricos
13.
Biochemistry ; 57(20): 2971-2983, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29683663

RESUMO

Understanding how oxidatively damaged RNA interacts with ribonucleases is important because of its proposed role in the development and progression of disease. Thus, understanding structural aspects of RNA containing lesions generated under oxidative stress, as well as its interactions with other biopolymers, is fundamental. We explored the reactivity of RNase A, RNase T1, and RNase H toward oligonucleotides of RNA containing 8-oxo-7,8-dihydroguanosine (8oxoG). This is the first example that addresses this relationship and will be useful for understanding (1) how these RNases can be used to characterize the structural impact that this lesion has on RNA and (2) how oxidatively modified RNA may be handled intracellularly. 8-OxoG was incorporated into 10-16-mers of RNA, and its reactivity with each ribonuclease was assessed via electrophoretic analyses, circular dichroism, and the use of other C8-purine-modified analogues (8-bromoguanosine, 8-methoxyguanosine, and 8-oxoadenosine). RNase T1 does not recognize sites containing 8-oxoG, while RNase A recognizes and cleaves RNA at positions containing this lesion while differentiating if it is involved in H-bonding. The selectivity of RNase A followed the order C > 8-oxoG ≈ U. In addition, isothermal titration calorimetry showed that an 8-oxoG-C3'-methylphosphate derivative can inhibit RNase A activity. Cleavage patterns obtained from RNase H displayed changes in reactivity in a sequence- and concentration-dependent manner and displayed recognition at sites containing the modification in some cases. These data will aid in understanding how this modification affects reactivity with ribonucleases and will enable the characterization of global and local structural changes in oxidatively damaged RNA.


Assuntos
Oligonucleotídeos/genética , Ribonuclease H/genética , Ribonuclease T1/genética , Ribonuclease Pancreático/genética , Dicroísmo Circular , Guanosina/análogos & derivados , Guanosina/química , Guanosina/genética , Humanos , Oligonucleotídeos/química , Estresse Oxidativo/genética , RNA/química , RNA/genética , Ribonuclease H/química , Ribonuclease T1/química , Ribonuclease Pancreático/química , Ribonucleases/química , Ribonucleases/genética , Especificidade por Substrato
14.
J Chem Theory Comput ; 13(12): 6358-6372, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29120639

RESUMO

Preferential solvation is a fundamental parameter for the interpretation of solubility and solute structural stability. The molecular basis for solute-solvent interactions can be obtained through distribution functions, and the thermodynamic connection to experimental data depends on the computation of distribution integrals, specifically Kirkwood-Buff integrals for the determination of preferential interactions. Standard radial distribution functions, however, are not convenient for the study of the solvation of complex, nonspherical solutes, as proteins. Here we show that minimum-distance distribution functions can be used to compute KB integrals while at the same time providing an insightful view of solute-solvent interactions at the molecular level. We compute preferential solvation parameters for Ribonuclease T1 in aqueous solutions of urea and trimethylamine N-oxide (TMAO) and show that, while macroscopic solvation shows that urea is preferentially bound to the protein surface and TMAO is preferentially excluded, both display specific density augmentations at the protein surface in dilute solutions. Therefore, direct protein-osmolyte interactions can play a role in the stability and activity of the protein even for preferentially hydrated systems. The generality of the distribution function and its natural connection to thermodynamic data suggest that it will be useful in general for the study of solvation in mixtures of structurally complex solutes and solvents.


Assuntos
Ribonuclease T1/química , Solventes/química , Metilaminas/química , Simulação de Dinâmica Molecular , Ribonuclease T1/metabolismo , Termodinâmica , Ureia/química
15.
Anal Chem ; 89(20): 10744-10752, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28942636

RESUMO

Liquid chromatography tandem mass spectrometry (LC-MS/MS) has proven to be a powerful analytical tool for the characterization of modified ribonucleic acids (RNAs). The typical approach for analyzing modified nucleosides within RNA sequences by mass spectrometry involves ribonuclease digestion followed by LC-MS/MS analysis and data interpretation. Here we describe a new software tool, RNAModMapper (RAMM), to assist in the interpretation of LC-MS/MS data. RAMM is a stand-alone package that requires user-submitted DNA or RNA sequences to create a local database against which collision-induced dissociation (CID) data of modified oligonucleotides can be compared. RAMM can interpret MS/MS data containing modified nucleosides in two modes: fixed and variable. In addition, RAMM can also utilize interpreted MS/MS data for RNA modification mapping back against the input sequence(s). The applicability of RAMM was first tested using total tRNA isolated from Escherichia coli. It was then applied to map modifications found in 16S and 23S rRNA from Streptomyces griseus.


Assuntos
RNA/análise , Software , Espectrometria de Massas em Tandem , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Bases de Dados Factuais , Nucleosídeos/química , RNA/metabolismo , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 23S/análise , RNA Ribossômico 23S/metabolismo , Curva ROC , Ribonuclease T1/metabolismo , Streptomyces griseus/genética
16.
J Am Soc Mass Spectrom ; 28(3): 551-561, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28105550

RESUMO

Even with the advent of high throughput methods to detect modified ribonucleic acids (RNAs), mass spectrometry remains a reliable method to detect, characterize, and place post-transcriptional modifications within an RNA sequence. Here we have developed a stable isotope labeling comparative analysis of RNA digests (SIL-CARD) approach, which improves upon the original 18O/16O labeling CARD method. Like the original, SIL-CARD allows sequence or modification information from a previously uncharacterized in vivo RNA sample to be obtained by direct comparison with a reference RNA, the sequence of which is known. This reference is in vitro transcribed using a 13C/15N isotopically enriched nucleoside triphosphate (NTP). The two RNAs are digested with an endonuclease, the specificity of which matches the labeled NTP used for transcription. As proof of concept, several transfer RNAs (tRNAs) were characterized by SIL-CARD, where labeled guanosine triphosphate was used for the reference in vitro transcription. RNase T1 digestion products from the in vitro transcript will be 15 Da higher in mass than the same digestion products from the in vivo tRNA that are unmodified, leading to a doublet in the mass spectrum. Singlets, rather than doublets, arise if a sequence variation or a post-transcriptional modification is present that results in a relative mass shift different from 15 Da. Moreover, the use of the in vitro synthesized tRNA transcript allows for quantitative measurement of RNA abundance. Overall, SIL-CARD simplifies data analysis and enhances quantitative RNA modification mapping by mass spectrometry. Graphical Abstract ᅟ.


Assuntos
Marcação por Isótopo/métodos , RNA/análise , RNA/química , Espectrometria de Massas em Tandem/métodos , Calibragem , Isótopos de Carbono/química , Cromatografia Líquida/métodos , Escherichia coli/genética , Marcação por Isótopo/normas , Isótopos de Nitrogênio/química , RNA de Transferência/análise , RNA de Transferência/química , Ribonuclease T1/química , Ribonuclease T1/metabolismo
17.
Biotechnol J ; 11(8): 1088-99, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27213717

RESUMO

Proteins that are modified by chemical conjugation require at least two separate purification processes. First the bulk protein is purified, and then after chemical conjugation, a second purification process is required to obtain the modified protein. In an effort to develop new enabling technologies to integrate bioprocessing and protein modification, we describe the use of disulfide-bridging conjugation to conduct PEGylation during protein refolding. Preliminary experiments using a PEG-mono-sulfone reagent with partially unfolded leptin and unfolded RNAse T1 indicated that the cysteine thiols underwent disulfide-bridging conjugation to give the PEGylated proteins. Interferon-ß1b (IFN-ß1b) was then expressed in E.coli as inclusion bodies and found to undergo disulfide bridging-conjugation during refolding. The PEG-IFN-ß1b was isolated by ion-exchange chromatography and displayed in vitro biological activity. In the absence of the PEGylation reagent, IFN-ß1b refolding was less efficient and yielded protein aggregates. No PEGylation was observed if the cysteines on IFN-ß1b were first modified with iodoacetamide prior to refolding. Our results demonstrate that the simultaneous refolding and disulfide bridging PEGylation of proteins could be a useful strategy in the development of affordable modified protein therapeutics.


Assuntos
Dissulfetos/química , Polietilenoglicóis/química , Proteínas/química , Proteínas/isolamento & purificação , Cromatografia por Troca Iônica , Cisteína/química , Interferon beta-1b/química , Interferon beta-1b/isolamento & purificação , Modelos Moleculares , Estrutura Molecular , Redobramento de Proteína , Ribonuclease T1/química , Ribonuclease T1/isolamento & purificação
18.
Biosci Biotechnol Biochem ; 80(9): 1681-92, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27151561

RESUMO

This paper describes the modern enzymology in Japanese bioindustries. The invention of Takadiastase by Jokiti Takamine in 1894 has revolutionized the world of industrial enzyme production by fermentation. In 1949, a new γ-amylase (glucan 1,4-α-glucosidase, EC 3.2.1.3) from A. luchuensis (formerly designated as A. awamori), was found by Kitahara. RNase T1 (guanyloribonuclease, EC 3.1.27.3) was discovered by Sato and Egami. Ando discovered Aspergillus nuclease S1 (single-stranded nucleate endonuclease, EC 3.1.30.1). Aspergillopepsin I (EC 3.4.23.18) from A. tubingensis (formerly designated as A. saitoi) activates trypsinogen to trypsin. Shintani et al. demonstrated Asp76 of aspergillopepsin I as the binding site for the basic substrate, trypsinogen. The new oligosaccharide moieties Man10GlcNAc2 and Man11GlcNAc2 were identified with α-1,2-mannosidase (EC 3.2.1.113) from A. tubingensis. A yeast mutant compatible of producing Man5GlcNAc2 human compatible sugar chains on glycoproteins was constructed. The acid activation of protyrosinase from A. oryzae at pH 3.0 was resolved. The hyper-protein production system of glucoamylase was established in a submerged culture.


Assuntos
Aspergillus oryzae/enzimologia , Biotecnologia , Fermentação , Ácido Aspártico Endopeptidases/isolamento & purificação , Ácido Aspártico Endopeptidases/metabolismo , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Glucana 1,4-alfa-Glucosidase/isolamento & purificação , Glucana 1,4-alfa-Glucosidase/metabolismo , Humanos , Japão , Ribonuclease T1/isolamento & purificação , Ribonuclease T1/metabolismo , Endonucleases Específicas para DNA e RNA de Cadeia Simples/isolamento & purificação , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Tripsinogênio/metabolismo
19.
Biochemistry ; 54(48): 7067-78, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26554903

RESUMO

The biological role of the existence of overlapping structures in RNA is possible yet remains very unexplored. G-Rich tracts of RNA form G-quadruplexes, while GC-rich sequences prefer stem-loop structures. The equilibrium between alternate structures within RNA may occur and influence its functionality. We tested the equilibrium between G-quadruplex and stem-loop structure in RNA and its effect on biological processes using pre-miRNA as a model system. Dicer enzyme recognizes canonical stem-loop structures in pre-miRNA to produce mature miRNAs. Deviation from stem-loop leads to deregulated mature miRNA levels, providing readout of the existence of an alternate structure per se G-quadruplex-mediated structural interference in miRNA maturation. In vitro analysis using beacon and Dicer cleavage assays indicated that mature miRNA levels depend on relative amounts of K(+) and Mg(2+) ions, suggesting an ion-dependent structural shift. Further in cellulo studies with and without TmPyP4 (RNA G-quadruplex destabilizer) demonstrated that miRNA biogenesis is modulated by G-quadruplex to stem-loop equilibrium in a subset of pre-miRNAs. Our combined analysis thus provides evidence of the formation of noncanonical G-quadruplexes in competition with canonical stem-loop structure inside the cell and its effect on miRNA maturation in a comprehensive manner.


Assuntos
Quadruplex G , MicroRNAs/química , MicroRNAs/metabolismo , Ribonuclease III/metabolismo , Sequência de Bases , Regulação da Expressão Gênica , Humanos , Células MCF-7 , MicroRNAs/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ribonuclease T1/metabolismo , Transcrição Gênica
20.
Int J Mol Sci ; 16(9): 21392-409, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26370969

RESUMO

Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA) intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA) including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.


Assuntos
Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Cisplatino/farmacologia , Sequências Repetidas Invertidas , RNA Bacteriano/genética , RNA Ribossômico/genética , Bactérias/metabolismo , Escherichia coli/genética , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Ribonuclease T1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...